
[Game] Programming 
I Didn’t Learn In School

presented by 
 

Anton Gerdelan 
Trinity College Dublin 

 
<gerdela@scss.tcd.ie> 
antongerdelan.net

mailto:gerdela@scss.tcd.ie
http://antongerdelan.net


me
• computer graphics research, 

Trinity College Dublin, 
Ireland 

• lectured graphics course at 
Trinity College 

• learned shader programming 
whilst working with Stefan 
Petersson here 

• lots of coding support for 
graphics courses



research projects
• AI behaviour. Steering. Vehicles. Fuzzy/GA 

• WebGL architectural models 

• attempting: realistic human rendering / 
Unreal engine 

• motion capture. animation models. 

• perceptual experiments



Life Cycle of the 
Programmer

•Start with some basic programming; “transform X into Y” 
•Spend 10 years learning ALL the formalised design methods 

•taking on complexity is almost never discouraged 
•“90% of my time is spent refactoring and structuring” 

•yearn for early days 
•At some point forced to make something the simple way again 

•…and it’s fun…and quick to make… 
•The unusual commonality of the “moment of realisation” 



(tech. lead Ubisoft Montreal)
has a great blog with lots of advice for aspiring game 

programmers fragmentbuffer.com

http://fragmentbuffer.com


–Thulsa Doom, Conan the Barbarian (1982)

“There was a time, boy, when I searched for 
steel, when steel meant more to me than gold or 

jewels” 



Why is complex bad?

• Takes too long to write (and read) 

• Refactoring and the fallacy of the ducks 

• Does not respect the computer 

• Unhelpful abstraction 

• We get very carried away with notions



Quandary

• We change our style ideas every year or two 

• I could present my “this year” ideas 

• Another opinionated rant from an academic about 
programming games?



Interview Prompts
“What would you tell yourself about programming if 

you could go back in time?” 

“What advice can you give about keeping code 
simple or working expediently?” 

“What are typical mistakes that new graduates 
make, that they would benefit from hearing now?” 

“Is there one reference/book/person that you 
recommend students read or follow?”



Mini Interview 1 
 

Niklas Lundberg
Game engine programmer 

Avalanche Studios  
Stockholm



“Don’t bother with object 
oriented programming, it's 

not helpful” 



“Try to keep functions having 1 task, 
not multiple 

(depending on extra passed in 
booleans etc.)” 



“Learn to program a real 
machine, not a virtual 

machine. 
e.g. use C, not java” 



“Don’t keep global state. 
Functions should have all 

inputs they need” 



• “watch all videos in this series:  
 
https://handmadehero.org 

• and don't proceed to the next until you 
understand each episode 100% 

• requires basic C knowledge 

• has a mini course for that too, but you will need 
some more”

https://handmadehero.org


Mini Interview 2 
John Romero



“Keep your code absolutely 
simple. Keep looking at your 

functions and figure out how you 
can simplify further.” 



“Write your code for this game 
only – not for a future game. You’re 
going to be writing new code later 

because you’ll be smarter.” 



“It will take you 10 years of 
constant programming and 

pushing yourself before you will be 
able to do something important. 

Study coders you respect and see 
how long they were programming 
before their big hit. Read Outliers 
by Malcolm Gladwell. There are 

no shortcuts.” 



“Try to code transparently. Tell 
your lead and peers exactly how 

you are going to solve your 
current task and get feedback 
and advice. Do not treat game 

programming like each coder is a 
black box. The project could go 
off the rails and cause delays.” 



“Programming is a creative art 
form based in logic. Every 

programmer is different and will 
code differently. It’s the output 

that matters.” 



“If you’re making a game with a small 
team, don’t use GIT – use SVN. Try not 

to branch. Always keep your code 
current as often as possible. 

Everyone should be able to make a 
full build and run the game at any 

time.” 



“Programmers should code as if the 
QA team does not exist. When you 

find a bug, fix it immediately. Do not 
code further. You risk your codebase 
depending on that bug. id Software 
did not have a QA team before I left 

after Quake 1.” 



Mini Interview 3 
 

Ivan-Assen Ivanov  

CTO 
Haemimont Games  

Sofia, Bulgaria



“There's a saying that making a 
game is like doing major 

reconstruction work on your 
airplane while you're flying it; I 

heavily recommend having an old 
airplane needing reconstruction in 

the first place!” 



“I see some sense in the classical 
one class per real-world concept 
OOP design style in the highest 
levels of gameplay code, e.g. 

having one object of class "Unit" 
for each, uhm, unit in the game, 

and where performance is the least 
concern.” 



“I see some value in the idea of "design 
patterns" as a common language; we say 

let's use the reasons pattern and 
everyone knows what we're talking about 

here. 

I don't get the religious attitude towards 
the book, and the treating of its list of 

patterns as end-all, be-all - something I'm 
sure the authors never intended.” 



“I never got the point of UML. 
Pick a high-enough level 

language and you won't need 
diagrams - you'll fit the "big 

picture" on a screen, then zoom 
as appropriate.” 



“A modern game contains many different 
subsystems, and what is true of code that 

is executed once per (one of ten 
thousand) object per frame is not as 

applicable of code that is executed once 
in a few seconds per human player. 

Writing code carefully considering the 
hardware is very rewarding, and very 

much necessary in the first case; 
unfortunately, it's also much harder, and 

working via abstractions can be 
forgiven in the second.” 



“The first thing new recruits need to unlearn 
is the love for their own code. New 

programmers love nothing more than to produce 
code - pages and pages of elaborate, complex 
code. But code is a liability, not an asset. The 
job of a programmer is to think first, and to solve 
problems of his customers (e.g. designers and 
artists in a game team) second. Not to produce 

code. Programmers need to learn to love 
deleting code more than they love writing new 
code. Programmers need to learn to let their 

code go and mercilessly delete and simplify 
when a better, or simpler solution presents itself.” 



“I think an important habit to have is to resist the 
temptation to abstract and create "general 

solutions" the first time you encounter a problem. 
It is better to implement simple, concrete 
solutions to the first and even the second 

occurrence of a similar problem. Only the third 
time you know enough about the problem to 
think of generalising - and even then you can't 

be sure you've seen it all.” 



“Anyone with a desire to delve in engine code 
should get a good understanding of C, a decent 

understanding of C++, and a cursory 
understanding of the assembly language of the 

machine they're targeting.” 



“Nowadays it's hard to evade JavaScript - it's not 
a very good language, but it's ubiquitous in large 
portions of the IT industry. C# is also a good bet, 

being embedded in Unity and also potentially 
useful in the real world, if you decide games 

aren't for you after all.” 



“I like the Handmade Hero project by Casey 
Muratori. It's a series of videos showing how a 
non-trivial game is made from first principles, 

without using _any_ middleware or "game 
engines". It's very instructional, and Casey is a 
gifted comedian just wasting his talent as a 

programming superstar.” 



–Thulsa Doom

“Yes! You know what it is, don't you boy? Shall I 
tell you? It's the least I can do. Steel isn't strong, 

boy, flesh is stronger!” 


