

Multi-Pass

Anton Gerdelan <gerdela@scss.tcd.ie>
Trinity College Dublin

end

mailto:gerdela@scss.tcd.ie

today

● some thoughts about your next year
● what to learn next (more advanced stuff)
● what to expect from the field in the future
● a short tech talk on 2d rendering

interviews

● Keep your game project to talk about
– Know about limitations, possible optimisations
– Put some tidy, simple code on Github etc.

● Project enthusiasm

interviews

● Make big bucks of OpenGL 4+ experience
● Prepare for ridiculous speed coding expectations
● Internships can be insightful / meet and greet
● Jams (especially collaborative)
● Know the answer to that bit hack slide in Texturing

research

● here at GV2
– Graphics, [Computer] Vision, Visualisation
– Perceptual studies
– Simulations

● potential supervisors
● think about the benefits of overseas study

– ask about good supervisors in area elsewhere

research and/or jobs

● Find someone good in your area
● Make sure the group is friendly

– Commitment of several years

● Think/discuss/argue for a solid idea before-hand
● Make sure that someone has funding available

next steps in graphics

coming back to do more later

● Don't worry if pace was too fast
● Got the gist of modern 3d vector graphics
● Took me about a year - OpenGL+shaders
● KISS
● Use/try a bigger range of tools

advanced topics

● WebGL and mobile devices
● geometry and tessellation shaders
● compute shaders
● UBOs, texture storage, streaming data buffers

– “approaching zero driver overhead” talks
● Normal maps, texture projection shadows
● Radiosity, ambient occlusion, global illumination

Future Graphics

● more GPU cores and memory
● glNext - ? simple API with no binding state machine?
● Better culling and clipping algorithms
● Metal, Mantle, alternative APIs
● Direct3D 12 – supposed to be much more efficient

Requested Topic

2d Rendering

Hardware-accelerated 2d Rendering

● Modern graphics for sprites is way harder than old-
fashioned direct pixel-writing

● Advantages of using vector graphics for 2d?
● Is there an easy way to do this?

Sprites

● gl_Position Z value is zero for everything
● Draw in back-to-front order where possible

– No need for depth buffer
– Easy to work out transparency / colour blending

Sprites

● Each sprite is a 2d quad (2 triangles)
– Could use attribute-less rendering
– Scale to size
– Use a model matrix or uniform vec3 to move
– Sample a texture

2d Animations

● Could switch textures
– High overhead

● Better to use an atlas
– Divide image into grid
– Padding Q. why?

● anim num tex coords→
● Time between frames
● Repeat
● DEMO

2d Animations

void change_sprite (int sprite_index) {

 const int num_cols = 2;
 const int num_rows = 2;

 int col = sprite_index % num_cols;
 int row = num_rows - 1 - sprite_index / num_rows;
 float s = (float)col / (float)num_cols;
 float t = (float)row / (float)num_rows;
 glUseProgram (sp);
 glUniform2f (st_offset_loc, s, t);

}

● Scale texture coordinates down to 1/4
● Offset by +0.25 for second row or

column
● I also flipped t so index 0 was top row

GUI Progress Bars

● Also 2d quads
● Draw after the scene
● Empty image
● Full image
● uniform float
factor 0..1

● Multi-texturing

if (st.s < rpm_fac) {
 fc = texture (full_dm, vec2 (st.s, 1.0 – st.t));
} else {
 fc = texture (empty_dm, vec2 (st.s, 1.0 – st.t));
}

Alpha Blending

● Transparency in GIMP, Photoshop etc. sets value for pixel alpha
● We have to tell OpenGL what to do with this
● glEnable (GL_BLEND);

● glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

● Various blend functions exist
– New pixel colour = (1.0 – a) * previous + a * current

● Can be semi-transparent
● This is not realistic transparency – it's just a mixing function

Alpha Blending

● glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

● Various blend functions exist
– New pixel colour = (1.0 – a) * previous + a * current

● Can be semi-transparent
● This is not realistic transparency – it's just a mixing

function

Framebuffer Effects Framework

● Drawn main scene to texture
● Lots of special effects can be added

– In the old-fashioned pixel-modifying way

● Blur
● Shake
● Rotate, twist, skew, flip
● Animated things: demo

Distributing Your Work

● Build in Release mode
● Libraries

– Release version
– Static libs
– Dependency Walker
– VS redistributables “DLL Hell” - or just don't use Visual Studio

● Relative paths to data being loaded
● Binary lump / wad /zip of data

Distributing Your Work

● Test on multiple machines
● Provide user options, and min(), fall-backs, or multiple builds of GL
● Find all possible GL and GLSL errors

– gDEBugger
– Debug callback
– Testing

● Apple .app builds
– Script to create a folder hierarchy

end

● Tomorrow – 11am
– Prefabs – set up early / kick out non-gfx ppl
– Have some sort of fall-back for laptop fails
– Talk one of us through a live demo
– Impressions
– Submit report, videos, code next week
– Grade by consensus

● Hope you enjoyed lectures for CS4052!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

