

Multi-Pass

Anton Gerdelan gerdela@scss.tcd.ie
Trinity College Dublin

mailto:gerdela@scss.tcd.ie

Fragment Shader Limitations

● Painful to add a global effect that modifies
ALL shader outputs
– Gamma correction
– Whole-screen flashes / palette change

● Would be nice to access neighbouring
fragments
– Blur
– Edge-detection
– More advanced effects

Multi-Pass Rendering Concept

render to
texture

draw
scene

draw
rectangle

render to
window

any number of passes
(compositing)

How to render to texture in GL

● Default framebuffer renders to the window
● Create

– additional framebuffer
– texture for colour buffer (RGBA == out vec4 frag_colour)
– texture for depth buffer (special depth format for 24-bit depth buffer)

● Attach textures to new framebuffer
● Bind new framebuffer
● Draw normal scene
● Bind back to default
● You have now rendered to a texture

C Code

● Basic setup demo and simple ex. (#34)
https://github.com/capnramses/antons_opengl_tutorials_book

● I walk through these in my book (later chapters)
● Just more tedious GL state machine code (similarish to VAO)

– bool init_fb () on main.cpp: line 34
– Check out how I swap the framebuffers in the while() loop

https://github.com/capnramses/antons_opengl_tutorials_book

Shaders that draw to a texture

● No changes
● Remember the fragment shader's output?

– out vec4 frag_colour;

● When we set up the new framebuffer, we re-direct this
(colour output 0) to our new attached colour texture

● Shaders write to a depth-buffer automatically
● We redirected this to use our attached depth texture

Shaders – Full-Screen Quad

● Could create a new VAO with 2 triangles that cover the
screen, and draw that

● Or...

Attribute-less Rendering

Note: horrible array format in GLSL. Stick to this or your code only works on some machines.

Attribute-less Rendering

● Vertices hard-coded in array in shader -1 to 1
● Built-in gl_VertexID integer to index
● Texture coordinates inferred from vertices
● No need to create or bind a VAO, buffers, etc.
● BTW This is your second rendering pass

glBindFramebuffer (GL_FRAMEBUFFER, 0);

glActiveTexture (GL_TEXTURE0);

glBindTexture (
 GL_TEXTURE_2D, our_colour_output_tex);

glDrawArrays (GL_TRIANGLE_STRIP, 0, 4);

Draw to main display this time

Sample texture that we drew
to in first pass

Fragment Shader

● Sample the texture
● frag_colour = texel draws the original scene→
● Q. how can we make a grey-scale version of the

original?
● PS remind me I want to do this now

Palette Effects, Basic Filters

● Greyscale/sepia filter with
weights

● Flashes over the whole
screen

● “Palette” effects (swap
certain colours)

● Gamma correction (just
make the attached colour
image sRGB format)“Beserk” mode in Doom (Id Software, 1993)

Kernel-Based Algorithms

● Computer vision and image processing algorithms
● Sliding window (“kernel”) of neighbouring pixels

– Blurs
– Bloom
– Edge detection

● Q. How can we work out the texture coordinates of
neighbouring pixels?

● Q. Are there any invalid neighbours?

1 2 1

2

1

2

12

0

sample neighbouring texels

● Texcoords are 0.0...1.0 but pixels are 0...1024 etc.
● 1 pixel distance in texture coordinates is

1.0 / width or 1.0 / height
● Use known width or height or send as uniforms
● If useful gl_FragCoord will give you the current

fragment's pixel coords i.e. in range of 0...1024
● Q. now how can we do a blur?

3x3 kernel
averaging blur

1 2 1

2

1

2

12

0

Compositing

● When drawing your second pass, instead of binding the
default framebuffer

● Bind yet another framebuffer with new textures
● Easy to chain together many post-processing passes

Deferred Rendering

● Textures can hold any data, not just visual images
● Can output more than one colour and texture from frag shader
● Exploit this
● Put other per-pixel variables in the texture

– Normals
– Positions
– Material properties

● This texture collection is called a geometry buffer (G-Buffer)
● Can then defer calculations to screen-space

G-Buffer for Deferred Lighting

● Each variable that we need for diffuse lighting
● Position
● Normal
● Diffuse reflection coefficient
● And z-buffer (depth map) for sorting

● Can now do lighting in second pass .frag
● Q. Advantage?

Advantages

● Eliminate overdraw of fragments
(not that useful in reality because
early-Z rejection)

● Lights to use are specified per-
fragment instead of per-mesh

● Managing lights to use in the 3d
scene based on 2d screen coverage

● Can use more lights in view overall
● Beware! 2nd pass, lots of sampling,

big G-buffer memory = slow

Deferred Lighting

● 64 lights in a scene
● Trick is to limit range of lights to reduce overlap

Other Post-Processing Techniques

● Tile-based rendering
– split view into 16x16px viewports

● Screen-space ambient occlusion (SSAO)
– G-buffer normals and depths to check for enclosed bits

● Stylised rendering
– Cartoon, oil painting, other NPR, edges
– Bloom (blur the light bits)
– High dynamic range (HDR) – render bigger size, and downsize
– Motion blur, depth-of-field blur (cinematic camera-like)

Disadvantages to Multi-Pass Rendering

● 2nd pass has high overhead cost
● Sampling very large textures is expensive, and kernels

require >1 sampling per pixel
● You lose built-in anti-aliasing of polygon edges
● Some techniques are harder to implement in s.space
● Memory cost of G-Buffer. Reducing size is involved.

References and Reading

● OpenGL Superbible – deferring shading example with
memory optimisations

● OpenGL Insights, chap. “Performance Tuning for Tile-
Based Architectures” - Bruce Merry

● Any image processing or computer vision source – ideas
for kernel and colour filters

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

