

-=Illuminating=-

Anton Gerdelan
Trinity College Dublin

Refresh from Part I

● Shading models review
– Q. Non-interpolating model?
– Q. Gouraud's model?
– Q. Phong's model?

● Reflection models review
– Q. Difference between local and global illumination?
– Q. What does Lambert model?
– Q. How does Phong's reflection work?

Phong Lighting is the Sum
i = i_a + i_d + i_s

[somewhat open] Questions

● Q. How can we model a non-shiny surface?
● Q. Is any real surface completely matte?
● Q. What is physically inaccurate about Phong lighting?
● Q. Do any real surfaces have a non-white specular colour?
● Q. What is missing from this lighting model to make it

convincing?

Warning: Corrupted Normals

● Q. Why should we never apply a non-uniform
scaling to a normal?

0.71
0.71
0.00

● Q. Work out values of normal if we scale by
(2.0, 1.0, 1.0)

● Q. Which way is our new normal pointing?

?
??

Warning: Corrupted Normals

0.71
0.71
0.00

● How can we avoid this?

a) Create a separate model matrix with just the rotations
“normal matrix”

b) Take inverse (transpose (model_matrix)) instead

c) Don't do lighting on things with uneven scaling

d) Don't ever do uneven scaling

Blinn-Phong

● Lose a small amount of accuracy in specular equation
● Little bit cheaper to calculate
● Replace reflect() with a half-way vector:

vec3 h = normalize (v - light_dir);
vec3 I_s = l_s * k_s * pow (dot (h, n), spec_exp);

n

incident
light,
light_dir

reflected light, r

vector to
viewer, v

h

Blinn-Phong

● Reduces specular power by about half –> double the exponent

Point / Directional / Spot Lights

● Were built-in to fixed-function graphics libraries
● Directional light (our light vector)

– Good for representing the sun, very distant lights etc.
– Parallel

● Point light
– Shines equally in all directions (not parallel)
– Has a world position
– Q. how do we calculate the light direction vector?

Spot Lights
● Cone of light
● Has light direction

vector
● Has cone angle
● Centre of cone =

brightest
● Edge of cone =

no light

● Q. How can we work out:
● If we our fragment is inside the cone or not
● How close our fragment is to centre of the cone (0.0 to 1.0)

Ideal specular and ideal diffuse (Lambertian) reflections

Anisotropic specular (Ward, SIGGRAPH '92?), rough diffuse

BRDF (Bi-directional reflectance
distribution function) models

Materials and Textures

● Q. How would we combine our texturing with lighting?
● Q. What if we want only parts of a surface to be shiny?

Attenuation (Roll-Off) with Distance

● Constant attenuation factor (reflection reduces energy)
● Linear attenuation factor (distance, easy to perceive)
● Quadratic attenuation factor (distance, hard to perceive)
● Realistic (for a spherical light source) – combine all 3

atten_factor = 1.0 /
(k_c + k_l * distance + k_q * distance^2))

k_c = 1 k_l = 2 / radius k_q = 1 / radius^2

Materials and Textures

Diffuse Map Specular Map
DEMO TIMEDEMO TIME

Multi-Texturing

#version 420

layout (binding = 0) uniform sampler2D diff_map;
layout (binding = 1) uniform sampler2D spec_map;

…

k_d = texture (diff_map, st).rgb;
k_s = texture (spec_map, st).rgb;

reads from
glActiveTexture(GL_TEXTURE1)

Other Light-Texture Combos

● Ambient Occlusion maps – bake in Blender
● Normal maps (quite tricky to set up)

– rgb colours == xyz normals per-fragment
– generate from a height map
– create height-map from mesh in Blender

Questions

● Q. More than one light? How?
● Q. Problems with that?

Gamma Correction

● Output linear colours = voltages
● Display not linear response
● = our_colour ^ 2.2
● = dark
● Add inverse of response curve to

make colour linear

● Don't correct textures unless
● sRGB format colour palette

Gamma Correction

colour = pow (colour, vec3 (2.2, 2.2, 2.2));

Gives you the full range of colour intensities on your
display

Mach Banding

● Optical illusion named after physicist Ernst Mach
● Perceived contrast at edges - exaggerated by human vision

system
– We have built-in edge-detection

Mach Banding

● The bright diagonal lines do not exist
● Cause: excite/inhibit behaviour in neural processing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

