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Textures

● Edwin Catmull's PhD thesis “Computer display of curved surfaces”, 1974 – U.Utah
– Also invented the z-buffer / depth buffer
– http://pixar.wikia.com/Ed_Catmull

● J.F. Blinn & M.E.Newell “Texture and reflection in computer-generated images” Communications ACM, 
1976 (U.Utah guys again)

● James Blinn – NASA Jet Propulsion Lab - Voyager approach graphics
● Martin Newell – owner of the teapot, Xerox, Adobe, Newell's algorithm (depth-sorting related)
● Didn't have hardware for real-time rendering textures until the 1990s
● Algorithm:

– Load surface colours from image file
– Map colours to surface area

● First adopted in 1990 by...

(anyone know?)

http://pixar.wikia.com/Ed_Catmull


  

Ultima Underworld
1992, Blue Sky Productions

But beaten to market by...



  

Catacomb 3-D
1991, Id Software

No hardware graphics acceleration yet - slower PCs - limited to walls



  

Basic Texture-Application Process

Source image

Set up texture coordinates to map mesh to image

Sample texture at run-time in fragment 
shader



  

Problem 1: Create Source Image

● How many colour channels?
● How many bits per colour channel?
● What file format?
● What resolution?

– Older hardware/drivers only allowed power-of-two sizes



  

Problem 2: Create Texture Coordinates

● Usually done in modelling software (Blender/Maya etc.)
● Can also be manually specified (for simple meshes)
● One pair of texture coordinates per-vertex

– [u,v] or [s,t]
– floats
– vec2



  

Texture Coordinates

● Each vertex must map to a particular 
point on the image

● I recall Direct3D uses U,V and V is 0 at 
top, 1 at bottom

● So for each vertex...
– Drag onto position on texture (Blender) 

or
– Manually create s,t (C code)
– Texcoords go in vertex buffer object like 

colours did
● Q. Main difference to vertex 

colours is?



  

Texture Coordinates

● Q. What coords?
● Q. Why are some repeated?
● Q. What mistakes could be made?
● Q. Why is that a good test image?

(?,?)
(?,?) (?,?)

(?,?)
(?,?)(?,?)



  

Main Problem (not part of algorithm)

● Preparing “texture” is a bit of work
– Load image file with image loader library
– Decoded image RGB[A] bytes are in main memory
– Create OpenGL texture object
– Copy image bytes into texture (goes to graphics memory)
– Set up texture filtering properties of texture
– Set up texture wrapping properties of texture
– Bind texture into active texture slot number 0



  

Image-Loader Library

● Sean Barrett's stb_image.h is awesome
(and simple and small and doesn't need linking)
https://github.com/nothings/stb

● libPNG is kind of complicated to use, but okay
● SOIL loads and creates GL textures too, but a bit OOD
● You can write your own – RAW formats and TGA are pretty 

simple to load manually
– It will help a lot to know how to read/write raw binary image files

https://github.com/nothings/stb


  

Image-Loader Library

● Library decodes image from one or more compressed 
image formats

● You get a block of RGBARGBARGBARGBA or RGBRGB...
● And hopefully image width and height dimensions
● You need to know how to copy memory using pointers and 

addresses
● = Pretty much the same as copying points data into a VBO
● You may need to flip the texture upside-down



  

Bonus Question

● What does this code do?

if ((x & (x - 1)) != 0 || (y & (y - 1)) != 0) {

https://graphics.stanford.edu/~seander/bithacks.html



  

Relevant GL Functions to Load Texture

● glGenTextures

● glActiveTexture (GL_TEXTURE0);

● glBindTexture

● glTexImage2D

– GL_RGBA or GL_RGB

● glTexParameteri

– GL_TEXTURE_WRAP_S

– GL_TEXTURE_WRAP_T

– GL_TEXTURE_MAG_FILTER

– GL_TEXTURE_MIN_FILTER

Always call before binding a texture

Copies actual image 
data into texture

Must call 4 times and 
set these 4 
parameters or may 
not work at all



  

Texture Parameters: Wrapping

● Defines what happens when using a texture coordinate outside 
range of 0 to 1

● Set parameter separately for S and T direction
– GL_CLAMP_TO_EDGE
– GL_CLAMP_TO_BORDER
– GL_MIRRORED_REPEAT
– GL_REPEAT
– GL_MIRROR_CLAMP_TO_EDGE

● Let's just try it (demo time)



  

Texture Parameters: Min and Mag Filters 

Magnification aliasing – walls are lower resolution than on-screen 
pixels (Tomb Raider, Eidos Interactive, 1996)



  

Texture Parameters: Min and Mag Filters

Minification aliasing – trees are higher resolution than on-screen pixels 
(Combat Mission, Battlefront.com, 1999)

Visible flicker 
when
camera moves



  

Texture Parameters: Min and Mag Filters

Minification aliasing – trees are higher resolution than on-screen pixels 
(Combat Mission, Battlefront.com, 1999)

Nearest-neighbour
algorithm

- sometimes leaf
- sometimes gap



  

Texture Parameters: Min and Mag Filters

● Built-in anti-aliasing filters
● Mag. Filters:

– Nearest neighbour
– Bi-linear interpolation

● Min. Filters:
– Nearest neighbour
– Bi-linear
– Various MiP-Maps (look at these later)

● Q. Why would you WANT to disable these anti-aliasing filters?



  

Problem 3: Sampling a Texture

● Built-in functionality to sample a texture in a 
fragment/pixel shader

● We must get texture coordinates to the fragment shader 
somehow.

● Q. How?



  

Sampling a Texture (almost)

● In to the vertex shader with other per-vertex data
● Out of the vertex shader where it is...

Q. What happens to it here?
● ...available as an input to the fragment shaders



  

Sampling a Texture

● Q. What texcoords 
should
this fragment's shader
get?

● Q. What is this process 
called again?

(0,1) (1,1)

(1,0)(0,0)



  

Sampling a Texture in a
Fragment Shader

● Add a “sampler2D” uniform – knows texture params
● Is actually an integer
● Its value is active texture # (slot) to use
● We bound into glActiveTexture (GL_TEXTURE0);
● Uniforms are = 0 by default
● There are max. ~8-32 “active”  textures in total (at one time)

– we don't need the others yet



  

Sampling a texture

● texture() function samples texture
– texture2D() on older versions of GL

● Returns a texel.
● Q. Why is this not just a “pixel”?



  

● Without filtering = closest 
pixel in image

● With bi-linear the texel is 
actually a weighted blend 
of surrounding pixels

● Q. What RGB colour do 
you expect at
UV (0.5, 0.5) with bi-
linear filtering?

Texel = “Texture Element”

Image Source: msdn.microsoft.com



  

Nearest NeighbourNearest Neighbour
for min&magfor min&mag



  

Bi-LinearBi-Linear
for min&magfor min&mag



  

And in Part II

● MiP-Maps
● Multi-Texturing
● Environment Maps
● *More advanced texture stuff to come after lighting



  

Prepare yourself for

Texturing Part 2Texturing Part 2
advanced texture-mapping algorithms



  

Multim im Parvo [Maps]

● Lance Williams, 
“Pyramidal parametrics”, 
1983

● Q. Guess where 
Williams studied?

● Mipmapping is a texture 
filtering algorithm for 
minification filtering

glGenerateMipmap (GL_TEXTURE_2D);



  

Multim im Parvo [Maps]
● Pre-calculate a set of images
● 256x256, 128x128...1x1
● Sum of these is 1/3 of the original
● Generating Mipmaps for a texture

– Pre-calculated
– Super-fast hardware extension
– DDS

● Sampler chooses next-smallest sub-
image to fit actual size



  

Enabling Basic Mipmaps

GlTexParameteri (
  GL_TEXTURE_2D,
  GL_TEXTURE_MIN_FILTER,
  GL_LINEAR_MIPMAP_NEAREST
);

GlTexParameteri (
  GL_TEXTURE_2D,
  GL_TEXTURE_MIN_FILTER,
  GL_NEAREST_MIPMAP_NEAREST
);

● Basic MM with
NN min filtering

● Basic MM with
bi-linear filtering



  

Multim im Parvo [Maps]

● As textured geometry is 
smaller/farther away...

● Rendering is faster
● Higher quality – no more aliasing 

due to minification + nearest 
neighbour
– smaller images are already anti-

aliased
● Uses 1/3 more memory
● Q. Why 1/3?



  

Bi-LinearBi-Linear
for min&magfor min&mag



  

Basic MM + BLBasic MM + BL



  

Tri-Linear Filtering

● Instead of having the sampler choose the next-biggest 
mipmap...

● Have them chooser the next-smaller AND next-biggest 
and linearly blend between the two

GlTexParameteri (
  GL_TEXTURE_2D,
  GL_TEXTURE_MIN_FILTER,
  GL_LINEAR_MIPMAP_LINEAR
);



  

Trilinear FilteringTrilinear Filtering



  

Anisotropy and MiP-Maps
● Main problem with our example is that textures are at an 

acute angle to the viewer
● Isotropy = not direction dependent, an-isotropy is
● Area requiring texture is high but very narrow
● Next smallest mipmap is the narrow size x narrow size
● Solution – generate rectangular sizes too

256x128 128x256, 128x64, 64x128...

GLfloat max_aniso = 0.0f;
GlGetFloatv (GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &max_aniso);
// set the maximum!
glTexParameterf (GL_TEXTURE_2D, 
GL_TEXTURE_MAX_ANISOTROPY_EXT, max_aniso);



  

Anisotropic (max)Anisotropic (max)



  

Further Reading
● Multi-Texturing

– Use more than 1 texture sampler in frag shader
– Blending edges together smoothly
– GUI controls / progress bars / health meters etc.

● Cube maps
– Sky boxes w/ parallax effect
– Reflection (fake/static or dynamic)
– Refraction (water, fluids etc.) - fake usually

● Texture projection
– Very fancy lights
– Shadows



  

Further Reading

● Real Time Rendering book
– Advanced shading chapter
– Texture mapping chapter

● Fundamentals
– Texturing mapping

● Tutorials for the previous slide!
– Worth doing for extra points in project
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