

-=Catmull's Texturing=-
1974

but with shaders

Part I of Texturing
Anton Gerdelan

Textures

● Edwin Catmull's PhD thesis “Computer display of curved surfaces”, 1974 – U.Utah
– Also invented the z-buffer / depth buffer
– http://pixar.wikia.com/Ed_Catmull

● J.F. Blinn & M.E.Newell “Texture and reflection in computer-generated images” Communications ACM,
1976 (U.Utah guys again)

● James Blinn – NASA Jet Propulsion Lab - Voyager approach graphics
● Martin Newell – owner of the teapot, Xerox, Adobe, Newell's algorithm (depth-sorting related)
● Didn't have hardware for real-time rendering textures until the 1990s
● Algorithm:

– Load surface colours from image file
– Map colours to surface area

● First adopted in 1990 by...

(anyone know?)

http://pixar.wikia.com/Ed_Catmull

Ultima Underworld
1992, Blue Sky Productions

But beaten to market by...

Catacomb 3-D
1991, Id Software

No hardware graphics acceleration yet - slower PCs - limited to walls

Basic Texture-Application Process

Source image

Set up texture coordinates to map mesh to image

Sample texture at run-time in fragment
shader

Problem 1: Create Source Image

● How many colour channels?
● How many bits per colour channel?
● What file format?
● What resolution?

– Older hardware/drivers only allowed power-of-two sizes

Problem 2: Create Texture Coordinates

● Usually done in modelling software (Blender/Maya etc.)
● Can also be manually specified (for simple meshes)
● One pair of texture coordinates per-vertex

– [u,v] or [s,t]
– floats
– vec2

Texture Coordinates

● Each vertex must map to a particular
point on the image

● I recall Direct3D uses U,V and V is 0 at
top, 1 at bottom

● So for each vertex...
– Drag onto position on texture (Blender)

or
– Manually create s,t (C code)
– Texcoords go in vertex buffer object like

colours did
● Q. Main difference to vertex

colours is?

Texture Coordinates

● Q. What coords?
● Q. Why are some repeated?
● Q. What mistakes could be made?
● Q. Why is that a good test image?

(?,?)
(?,?) (?,?)

(?,?)
(?,?)(?,?)

Main Problem (not part of algorithm)

● Preparing “texture” is a bit of work
– Load image file with image loader library
– Decoded image RGB[A] bytes are in main memory
– Create OpenGL texture object
– Copy image bytes into texture (goes to graphics memory)
– Set up texture filtering properties of texture
– Set up texture wrapping properties of texture
– Bind texture into active texture slot number 0

Image-Loader Library

● Sean Barrett's stb_image.h is awesome
(and simple and small and doesn't need linking)
https://github.com/nothings/stb

● libPNG is kind of complicated to use, but okay
● SOIL loads and creates GL textures too, but a bit OOD
● You can write your own – RAW formats and TGA are pretty

simple to load manually
– It will help a lot to know how to read/write raw binary image files

https://github.com/nothings/stb

Image-Loader Library

● Library decodes image from one or more compressed
image formats

● You get a block of RGBARGBARGBARGBA or RGBRGB...
● And hopefully image width and height dimensions
● You need to know how to copy memory using pointers and

addresses
● = Pretty much the same as copying points data into a VBO
● You may need to flip the texture upside-down

Bonus Question

● What does this code do?

if ((x & (x - 1)) != 0 || (y & (y - 1)) != 0) {

https://graphics.stanford.edu/~seander/bithacks.html

Relevant GL Functions to Load Texture

● glGenTextures

● glActiveTexture (GL_TEXTURE0);

● glBindTexture

● glTexImage2D

– GL_RGBA or GL_RGB

● glTexParameteri

– GL_TEXTURE_WRAP_S

– GL_TEXTURE_WRAP_T

– GL_TEXTURE_MAG_FILTER

– GL_TEXTURE_MIN_FILTER

Always call before binding a texture

Copies actual image
data into texture

Must call 4 times and
set these 4
parameters or may
not work at all

Texture Parameters: Wrapping

● Defines what happens when using a texture coordinate outside
range of 0 to 1

● Set parameter separately for S and T direction
– GL_CLAMP_TO_EDGE
– GL_CLAMP_TO_BORDER
– GL_MIRRORED_REPEAT
– GL_REPEAT
– GL_MIRROR_CLAMP_TO_EDGE

● Let's just try it (demo time)

Texture Parameters: Min and Mag Filters

Magnification aliasing – walls are lower resolution than on-screen
pixels (Tomb Raider, Eidos Interactive, 1996)

Texture Parameters: Min and Mag Filters

Minification aliasing – trees are higher resolution than on-screen pixels
(Combat Mission, Battlefront.com, 1999)

Visible flicker
when
camera moves

Texture Parameters: Min and Mag Filters

Minification aliasing – trees are higher resolution than on-screen pixels
(Combat Mission, Battlefront.com, 1999)

Nearest-neighbour
algorithm

- sometimes leaf
- sometimes gap

Texture Parameters: Min and Mag Filters

● Built-in anti-aliasing filters
● Mag. Filters:

– Nearest neighbour
– Bi-linear interpolation

● Min. Filters:
– Nearest neighbour
– Bi-linear
– Various MiP-Maps (look at these later)

● Q. Why would you WANT to disable these anti-aliasing filters?

Problem 3: Sampling a Texture

● Built-in functionality to sample a texture in a
fragment/pixel shader

● We must get texture coordinates to the fragment shader
somehow.

● Q. How?

Sampling a Texture (almost)

● In to the vertex shader with other per-vertex data
● Out of the vertex shader where it is...

Q. What happens to it here?
● ...available as an input to the fragment shaders

Sampling a Texture

● Q. What texcoords
should
this fragment's shader
get?

● Q. What is this process
called again?

(0,1) (1,1)

(1,0)(0,0)

Sampling a Texture in a
Fragment Shader

● Add a “sampler2D” uniform – knows texture params
● Is actually an integer
● Its value is active texture # (slot) to use
● We bound into glActiveTexture (GL_TEXTURE0);
● Uniforms are = 0 by default
● There are max. ~8-32 “active” textures in total (at one time)

– we don't need the others yet

Sampling a texture

● texture() function samples texture
– texture2D() on older versions of GL

● Returns a texel.
● Q. Why is this not just a “pixel”?

● Without filtering = closest
pixel in image

● With bi-linear the texel is
actually a weighted blend
of surrounding pixels

● Q. What RGB colour do
you expect at
UV (0.5, 0.5) with bi-
linear filtering?

Texel = “Texture Element”

Image Source: msdn.microsoft.com

Nearest NeighbourNearest Neighbour
for min&magfor min&mag

Bi-LinearBi-Linear
for min&magfor min&mag

And in Part II

● MiP-Maps
● Multi-Texturing
● Environment Maps
● *More advanced texture stuff to come after lighting

Prepare yourself for

Texturing Part 2Texturing Part 2
advanced texture-mapping algorithms

Multim im Parvo [Maps]

● Lance Williams,
“Pyramidal parametrics”,
1983

● Q. Guess where
Williams studied?

● Mipmapping is a texture
filtering algorithm for
minification filtering

glGenerateMipmap (GL_TEXTURE_2D);

Multim im Parvo [Maps]
● Pre-calculate a set of images
● 256x256, 128x128...1x1
● Sum of these is 1/3 of the original
● Generating Mipmaps for a texture

– Pre-calculated
– Super-fast hardware extension
– DDS

● Sampler chooses next-smallest sub-
image to fit actual size

Enabling Basic Mipmaps

GlTexParameteri (
 GL_TEXTURE_2D,
 GL_TEXTURE_MIN_FILTER,
 GL_LINEAR_MIPMAP_NEAREST
);

GlTexParameteri (
 GL_TEXTURE_2D,
 GL_TEXTURE_MIN_FILTER,
 GL_NEAREST_MIPMAP_NEAREST
);

● Basic MM with
NN min filtering

● Basic MM with
bi-linear filtering

Multim im Parvo [Maps]

● As textured geometry is
smaller/farther away...

● Rendering is faster
● Higher quality – no more aliasing

due to minification + nearest
neighbour
– smaller images are already anti-

aliased
● Uses 1/3 more memory
● Q. Why 1/3?

Bi-LinearBi-Linear
for min&magfor min&mag

Basic MM + BLBasic MM + BL

Tri-Linear Filtering

● Instead of having the sampler choose the next-biggest
mipmap...

● Have them chooser the next-smaller AND next-biggest
and linearly blend between the two

GlTexParameteri (
 GL_TEXTURE_2D,
 GL_TEXTURE_MIN_FILTER,
 GL_LINEAR_MIPMAP_LINEAR
);

Trilinear FilteringTrilinear Filtering

Anisotropy and MiP-Maps
● Main problem with our example is that textures are at an

acute angle to the viewer
● Isotropy = not direction dependent, an-isotropy is
● Area requiring texture is high but very narrow
● Next smallest mipmap is the narrow size x narrow size
● Solution – generate rectangular sizes too

256x128 128x256, 128x64, 64x128...

GLfloat max_aniso = 0.0f;
GlGetFloatv (GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &max_aniso);
// set the maximum!
glTexParameterf (GL_TEXTURE_2D,
GL_TEXTURE_MAX_ANISOTROPY_EXT, max_aniso);

Anisotropic (max)Anisotropic (max)

Further Reading
● Multi-Texturing

– Use more than 1 texture sampler in frag shader
– Blending edges together smoothly
– GUI controls / progress bars / health meters etc.

● Cube maps
– Sky boxes w/ parallax effect
– Reflection (fake/static or dynamic)
– Refraction (water, fluids etc.) - fake usually

● Texture projection
– Very fancy lights
– Shadows

Further Reading

● Real Time Rendering book
– Advanced shading chapter
– Texture mapping chapter

● Fundamentals
– Texturing mapping

● Tutorials for the previous slide!
– Worth doing for extra points in project

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

