

Transformation

Computer Graphics 4052

6 October

Dr Anton Gerdelan
gerdela@scss.tcd.ie

mailto:gerdela@scss.tcd.ie

Simplest Example

● Easiest way to scale our triangle?
● Easiest way to move our triangle?
● Demo time

First – Maths Revision

● Q. Define a
– 3d point
– 3d vector
– 3d unit vector

● Q. What do we use each for in graphics?

Modify from Main Programme?

● How can we update/change the amount that we move or
scale?

● Hint: use a shader keyword
● Demo time

Rotation

● Q. How can we rotate our triangle?
● How can we rotate a 3d point?
● Rotation is around the origin (the 0,0,0 point)

Transformation Matrices

● Translation / rotation / scale are called affine transforms
● Multiply 3x3 matrix with 3d vector to apply it

Matrix * Vector

● Q. What is the result in the vector?
● i.e. what does this matrix do?

Row-Major vs. Column-Major

● We will use column-major notation
● Multiplication order for column-major is right-to-left
● It is possible to use row-major instead (most DX apps do)

Reversed in row-major

Column

3X3 Rotation Around Z-Axis

 cos(theta) -sin(theta) 0.0

 sin(theta) cos(theta) 0.0

 0.0 0.0 1.0

● Theta will be in radians in C
● Right-hand rule for rotation direction
● Q. Which way will my triangle turn on screen?

Rotation Demo

● Define matrix as an array of floats (how many for a 3x3?)

● Array memory is in column order for OpenGL

● Update shader uniform for matrix inside main loop
● glUniform...() family of functions
● glUniformMatrix3fv() takes an array of 9 floats

TRANSFORMATION
PART II

4x4 Homogenous Matrices

● You can use 3d matrices, but we tend to use 4d matrices
in graphics, and 4d vectors/points.

● These are not 4d hyper-geometry - it's a sneaky exploit.
● Q. Any idea why we might like 4d matrices?

Matrix * Vector Rules

● A 3x3 matrix (mat3) can only multiply with a 3d vector
(vec3)

● A 4x4 matrix (mat4) can only multiply with a 4d (vec4)
● Q. If we have a 4x4 matrix and a 3d point, how do

we make our 3d point into a 4d point?

4d Vectors

● XYZ and W
● vec4 in GLSL
● For POINTS set the 4th component to 1.0
● For VECTORS set the 4th component to 0.0
● Q. Any idea why?

● vec4 (1.0, 5.0, -20.0, 0.0);

● vec4 (0.0, -1.0, 0.0, 1.0);

This is a dirty trick!

Now, What Was the Point in Going 4d?

● We can combine many matrices together by
multiplication
– mat4 M = R * T * S;

– vec4 result = M * vec4 (vp.xyz, 1.0);

● Send fewer matrix uniforms updated over the bus
● Create a transformation pipeline (more on that soon)

4X4 Homogenous Matrix

 Sx 0.0 0.0 Tx

 0.0 Sy 0.0 Ty

 0.0 0.0 Sz Tz

 0.0 0.0 0.0 1.0

rotation and
scaling

translation x, y, z

Putting translation in the final column lets us do our sneaky
trick...

Matrix * Vector

● Q. Can you figure it out?
What the 0 or 1 does at the end of a vec4?

Matrix * Vector

● Q. Can you figure it out?
What the 0 or 1 does at the end of a vec4?

Matrix Multiplication

 a b

 c d

 e f

 g h
AB = =

 (ae + bg) (af + bh)

 (ce + dg) (cf + dh)

Each cell in result is =
Sum of:

A(our row, first col) * B(first row, our col) +
...
+ A(our row, last col) * B(last row, our col)

A B

Identity Matrix

 1.0 0.0 0.0 0.0

 0.0 1.0 0.0 0.0

 0.0 0.0 1.0 0.0

 0.0 0.0 0.0 1.0

Main diagonal

Transpose Matrix

● Swaps between column-major and row-major layout
● Flip values over the main diagonal
● Q. Can y'all compute the transpose of this?

 1.0 0.5 0.0 0.0

 0.0 2.0 0.0 0.0

-5.0 0.0 1.0 -1.0

 0.0 0.0 0.0 1.0

Inverse Matrix

● Reverses any matrix transformation
● Or transform relative to another object
● Quite complicated to compute
● Work out determinant, then multiply with cofactors

 1.0 0.0 0.0 2.0

 0.0 1.0 0.0 0.0

 0.0 0.0 1.0 0.0

 0.0 0.0 0.0 1.0

Q. Guess?

Most Important Homework

1. Find out how to build & use the following for 4x4 matrices on paper:
– Identity
– Scaling
– Translation
– Rotation around X axis, Y axis, and Z axis
– Matrix * Matrix

2. Spot the difference between row and column-major layouts
– Hint: column-major has the translation in part in a column

3. Know which order multiplication goes in R-to-L or L-to-R?

Guidelines

● Get a 3d maths library for C/C++ or make your own
– Christophe Riccio's GLM http://glm.g-truc.net/
– I made a simple one (Blackboard)

● Make a cheat-sheet (or grab mine off Blackboard)
● Know how the maths work for all of these operations
● If unusure – textbooks and online sources!
● This stuff definitely comes up in job interview tests,

especially certain famous companies starting with 'H'

http://glm.g-truc.net/

Next

● Extending the transformation pipeline to add a virtual
camera
– viewing position and angle
– using perspective

Notes

● I deliberately skipped some things
– Vector addition
– Unit vectors and normalisation
– Dot product of 2 vectors
– Cross product of 2 vectors

● I plan to introduce this where we actually use it (lighting)
● ...and because I ramble too much

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

