

3d Programming I

Dr Anton Gerdelan
gerdela@scss.tcd.ie

mailto:gerdela@scss.tcd.ie

3d Programming

● 3d programming is very difficult
● 3d programming is very time consuming

3d Programming

● Practical knowledge of the latest, low-level
graphics APIs is very valuable (CV)

● Good grasp of basic concepts in this semester
● Caveat - You must keep API knowledge up-to-

date or it becomes redundant

Essential Checklist

✔ always have a pencil and paper
✔ solve your problem before you start coding
✔ know how to compile and link against libraries
✔ know how to use memory, pointers, addresses
✔ understand the hardware pipeline
✔ make a 3d maths cheat sheet
✔ do debugging (visual and programmatic)
✔ print the Quick Reference Card for OpenGL
✔ start assignments ASAP

Quick Background
● What is a vertex?
● Modern graphics hardware is able to draw:

– triangles
– points
– lines (unofficially deprecated)

● How do we define these?
● What is a normal?

OpenGL

● Open Grapics Library - originally the IrisGL by SGI
● Managed by Khronos Group

{lots of big hw and sw companies}
● Vector graphics
● Only the spec. is sort-of open
● Various implementations, lots of platforms
● C API + driver + GLSL shaders
● All the APIs do the same jobs on hardware, but present

different interfaces

OpenGL Caveats

● OpenGL has a very clunky old-fashioned C interface that
will definitely confuse

● OpenGL has been modernised but there is a lot of left-
over “cruft” that you shouldn't use

● Print the Quick Reference Card and double-check
everything that you use.
http://www.opengl.org/sdk/docs/

● The naming conventions are very confusing
● OpenGL is currently being completely re-written to

address these problems
● I'll try to help steer around these issues - use the

discussion boards if unsure!

http://www.opengl.org/sdk/docs/

OpenGL Global State Machine

● The OpenGL interface uses an architecture called a
“global state machine”

● Instead of doing this sort of thing:
Mesh myMesh;
myMesh.setData (some_array);
opengl.drawMesh (myMesh);

● in a G.S.M. we do this sort of thing [pseudo-code]:
unsigned int mesh_handle;
glGenMesh (&mesh_handle); // okay so far, just C style
glBindMesh (mesh_handle); // my mesh is now “the” mesh
// affects most recently “bound” mesh
glMeshData (some_array);

● How this might cause a problem later?

OpenGL Global State Machine

● Operations affect the currently “bound” object
● Be very careful. Write long functions.
● Can sometimes “unbind” by binding to 0 (no object)
● Operations “enable” states like

blending/transparency
● They affect all subsequently drawn things
● Don't forget to “disable” things
● Can get messy in larger programmes
● Write long functions.

Graphics API Architecture

● Set-up and rendering loop run
on CPU

● Copy mesh data to buffers in
graphics hardware memory

● Write shaders to draw on GPU
(graphics processing unit)

● CPU command queues
drawing on GPU with this
shader, and that mesh data

● CPU and GPU then run
asychronously

Before We Look at Code

● OpenGL functions preceded
by “gl...()”

● OpenGL data types preceded
by “GL...”

● OpenGL constants preceeded
by “GL_...”

● Find each feature used in man
pages
http://www.opengl.org/sdk/d
ocs/man/

● Parameters, related functions

http://www.opengl.org/sdk/docs/man/
http://www.opengl.org/sdk/docs/man/

Walk-Through “Hello Triangle”

● Upgrade graphics drivers to download latest OpenGL
libraries

● GLEW or GL3W - extensions and newest GL.h
● GLFW or FreeGLUT or SDL or Qt - OS window/context

Start GLFW (or FreeGLUT)

● Start GLFW
● We use GLFW to start an OpenGL context
● Can use FreeGLUT, SDL, Qt, etc. Instead
● Can also do manually, but ugly

Hint to Use a Specific OpenGL Version

● Leave commented the first time, it will try to run latest v.
● We can print this out to see what you have on the machine
● Uncomment and specify to force a specific version (good,

safe practice)
● CORE and FORWARD mean “don't allow any old, deprecated

stuff”
● Apple only has 3.2 and 4.1? core, forward implemented

Create a Window on the OS

● GLFW/FreeGLUT etc. do this in a platform-
independent way

● Tie OpenGL context to the window
● Refer to GLFW docs for each function

Start GLEW (or GL3W)

● Windows has a 1992? Microsoft gl.h in the system folder
● Makes sure you are using the latest gl.h
● Makes extensions available (experimental/new feature

plug-ins)
● Ask OpenGL to print the version running (check in console)
● 3.2+ is fine for this course

Create Vertex Points

Create Vertex Buffer Object (VBO)

● We copy our array of points from RAM to
graphics memory

● Note “binding” idea
● The vbo variable is just an unsigned integer that

GL will give an unique ID to

Create Vertex Array Object (VAO)

● “What” to draw
● Meta-data with “attribute” pointer that says

what data from a VBO to use for a shader input
variable

Vertex Shader and Fragment Shader Strings

● “How” to draw (style)
● Set vertex positions in range -1 to 1 on X,Y,Z
● gl_Position is the built-in variable to use for final position
● Colour in RGBA (red blue green alpha) range 0.0 to 1.0
● Like C but more data types.

Compile and Link Shaders

● Compile each shader
● Attach to shader program (another bad naming convention)
● Link the program
● Should check compile and linking logs for errors

Drawing Loop

● Clear drawing buffer {colour, depth}
● “Use” our shader program
● “Bind” our VAO
● Draw triangles. Start at point 0. Use 3 points. How many triangles?
● Swap buffers. Why?

Terminate

● Makes sure window closes if your loop finishes first
● Compile, link against GLEW and GLFW and OpenGL
● VS Template on Blackboard
● Makefiles for Linux/Mac/Windows

https://github.com/capnramses/antons_opengl_tutorials_book/

● Don't get stuck on linking/projects - start fiddling now!

https://github.com/capnramses/antons_opengl_tutorials_book/

“Hello Triangle”

● Getting GL started is a
lot of work

● “If you can draw 1
triangle, you can draw
1000000”

● Go through some
tutorials

Pause and Review

● What are the main components of a modern 3d
graphics programme?

● Where do we store mesh data (vertex points)?
● In what?
● How do we define the format of the data?
● What do we need to do before we tell OpenGL

to draw with glDrawArrays() etc.?

Things to Think About or Try

● Can we change the colour of the triangle drawn?
● How can we extend the triangle into a square?
● Could we load mesh data from a file rather than

an array?
● Shaders can be loaded from files. If you change

a shader in an external file, do you need to re-
compile?

● How would you draw a second, separate shape?

3d Programming I

Part B

Graphics System Architecture

● move data to graphics hardware before drawing
● minimise use of the bus

Asynchronous Processing

● Minimise CPU-GPU bus comm. Overhead
● Maximise parallel processing to reduce overall GPU time
● “Client” gl commands queue up and wait to be run on GPU
● Can glFlush() to say “hurry up, I'm waiting” and glFinish() to

actually wait – don't normally need to use these

Closer Look at Shaders

GPU Parallelism
● 1 vertex = 1 shader = 1 core
● 1 fragment = 1 shader = 1 core
● but drawing operations serialise
● .: 1 big mesh draw is faster than many small draws

GPU Uniform Shader Cores

GeForce 605 48

Radeon HD 7350 80

GeForce GTX 580 512

Radeon HD 8750 768

GeForce GTX 690 1536

Radeon HD 8990 2304

● minimum:
– vertex shader
– fragment shader

● also have GPGPU
“compute” shaders
now

● note: Direct3D hw
pipeline is the same,
but different names

Difference Between Fragment and Pixels

● Pixel = “picture element”
● Fragment = pixel-sized area of a surface
● Each triangle is divided into fragments on

rasterisation
● All fragments are drawn, even the obscured ones*
● If depth testing is enabled closer fragments are

drawn over farther-away fragments
● .: Huge #s of redundant FS may be executed

Shader Language

OpenGL Version GLSL Version Tag

1.2 none none

2.0 1.10.59 #version 110

2.1 1.20.8 #version 120

3.0 1.30.10 #version 130

3.1 1.40.08 #version 140

3.2 1.50.11 #version 150

3.3 3.30.6 #version 330

4.0 4.00.9 #version 400

4.1 4.10.6 #version 410

4.2 4.20.6 #version 420

4.3 4.30.6 #version 430

4.4 ... #version 440

...

GLSL Operators and Data Types
● Same operators as C
● no pointers
● bit-wise operators since v 1.30

data type detail common use

void same as C functions that do not
return a value

bool, int, float same as C

vec2, vec3, vec4 2d, 3d, 4d floating point points and direction vectors

mat2, mat3, mat4 2x2, 3x3, 4x4 f.p. matrices transforming points,
vectors

sampler2D 2d texture texture mapping

samplerCube 6-sided texture sky boxes

sampler2DShadow shadow projected texture

ivec3 etc. integer versions

File Naming Convention

● Upgarde the template – load shader strings from text files
● post-fix with

– .vert - vetex shader
– .frag - fragment shader
– .geom - geometry shader
– .comp - compute shader
– .tesc - tessellation control shader
– .tese - tessellation evaluation shader

● allows you to use a tool like Glslang reference compiler to
check for [obvious] errors

Example Vertex Shader

#version 400

in vec3 vertex_position;

void main() {
 gl_Position = vec4 (vertex_position, 1.0);
}

● Macro to explicitly set GLSL version required. Can also use #defines
● in keyword – variable from previous stage in pipeline.

Q. What is the stage before the vertex shader?
● vec3 - 3d vector. Store positions, directions, or colours.
● Every shader has a main() entry point as in C.

... contd.

Example Vertex Shader

#version 400

in vec3 vertex_position;

void main() {
 gl_Position = vec4 (vertex_position, 1.0);
}

● vec4 - has 4th component. gl_Position uses it to determine
perspective. Set by virtual cameras. For now leave at 1.0 - "don't
calculate any perspective".

● Can also use out keyword to send variable to next stage.
Q. What is the next stage?

● Every VS positions one vertex between -1:1,-1:1,-1:1.
Q. How does every vertex end up in a different position
then?

● minimum:
– vertex shader
– fragment shader

● also have GPGPU
“compute” shaders
now

● note: Direct3D hw
pipeline is the same,
but different names

Example Fragment Shader

#version 400

uniform vec4 inputColour;

out vec4 fragColour;

void main() {

 fragColour = inputColour;

}

● What important pipeline process happens first?
● A uniform variable is a way to communicate to shaders from the main

application in C
● For each fragment set a vec4 to RGBA (range 0.0 to 1.0)

Q. What is the next stage? Where does out go?

Q. What can the alpha channel do?

Uniforms

// do this once, after linking the shader p. not in the main loop
int inputColour_loc = glGetUniformLocation (my_shader_program, “inputColour”);
if (inputColour_loc < 0) {
 fprintf (stderr, “ERROR inputColour variable not found. Invalid uniform\n”);
 do something rash;
}

// do this whenever you want to change the colour used by this shader program
glUseProgram (my_shader_program);
glUniform4f (inputColour_loc, 0.5f, 0.5f, 1.0f, 1.0f);

● Uniforms are 0 by default i.e. our colour=black
● Unused uniforms are optimised out by shader compiler
● Basic uniforms are specific and persistent to one shader programme
● Uniforms are available to all shaders in programme
● Uniforms are a constant value in all shaders
● You can change a uniform once, every frame, or whenever you like
● Keep uniform updates to a minimum (don't flood the bus)

Adding Error-Checking Functionality

● After calling glCompileShader()
– Check GL_COMPILE_STATUS with glGetShaderiv()
– If failed, get the log from glGetShaderInfoLog() and print it!

● After calling glLinkProgram()
– Check GL_LINK_STATUS with glGetProgramiv()
– Get the log from glGetProgramInfoLog() and print it!

● Check out the man-pages to find out how to use these
functions.

● Add this to your projects! It gives you basic error checking
with the line numbers.

Shadertoy

● WebGL tool to experiment with shaders

on-the-fly

● implement entirely in a fragment shader

https://www.shadertoy.com/

https://www.shadertoy.com/

Example: Adding Vertex Colours

Data Layout Options

● We could:
– Concatenate colour data onto the end of our points

buffer:
array = XYZXYZXYZRGBRGBRGB

– Interleave colours between points:
array = XYZRGBXYZRGBXYZRGB

– Just create a new array and new vertex buffer
object
array1 = XYZXYZXYZ array2 = RGBRGBRGB

Second Array

 GLfloat points[] = {
 0.0f, 0.5f, 0.0f,
 0.5f, -0.5f, 0.0f,
 -0.5f, -0.5f, 0.0f
};

GLfloat colours[] = {
 1.0f, 0.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 0.0f, 0.0f, 1.0f
};

Second VBO

GLuint points_vbo = 0;
glGenBuffers (1, &points_vbo);
glBindBuffer (GL_ARRAY_BUFFER, points_vbo);
glBufferData (GL_ARRAY_BUFFER, sizeof (points),
points, GL_STATIC_DRAW);

GLuint colours_vbo = 0;
glGenBuffers (1, &colours_vbo);
glBindBuffer (GL_ARRAY_BUFFER, colours_vbo);
glBufferData (GL_ARRAY_BUFFER, sizeof (colours),
colours, GL_STATIC_DRAW);

Tell the VAO where to get 2nd variable

GLuint vao;
glGenVertexArrays (1, &vao);
glBindVertexArray (vao);
glEnableVertexAttribArray (0);
glBindBuffer (GL_ARRAY_BUFFER, points_vbo);
glVertexAttribPointer (0, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glEnableVertexAttribArray (1);
glBindBuffer (GL_ARRAY_BUFFER, colours_vbo);
glVertexAttribPointer (1, 3, GL_FLOAT, GL_FALSE, 0, NULL);

Second shader input
variable

Still a vec3

Change these 2
variables if interleaved
or concatenated in
one VBO

Modify Vertex Shader

#version 400
layout (location=0) in vec3 vp; // point
layout (location=1) in vec3 vc; // colour

out vec3 fcolour;

void main () {
 fcolour = point; // “pass-through” output
 gl_Position = vec4 (vp, 1.0);
}

Q. Why does the colour input have to start in the vertex
shader?

Modify the Fragment Shader

#version 400
in vec3 fcolour;

out vec4 frag_colour;

void main () {
 frag_colour = vec4 (fcolour, 1.0);
}

Q. There are more fragments than vertices. What values will
fcolour have in each fragment?

Interpolation

Drawing Modes

● Points can be scaled
● Lines are deprecated

but still sort-of work
● How would you

change your triangles
to an edges
wireframe?

Winding Order and Back-Face Culling

● Easy optimisation – don't waste time drawing the
back face or inside-facing parts of a mesh

● How do we define the “front” and “back”
● = order that points are given
● Clock-wise order or Counter clock-wise

glEnable (GL_CULL_FACE); // cull face
glCullFace (GL_BACK); // cull back face
glFrontFace (GL_CW); // usually front is CCW

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

